领先全球HELE高精密石英晶体振荡器专用于卫星系统,经过自身不懈的努力与坚持,加高电子公司凭借着自身的努力与奋斗,实现自我的价值,并将更加优质的产品进行广泛的推广,如今,加高晶振被广泛应用各个领域,尤其适合用于医疗设备,汽车电子,通信应用等领域,所打磨出来的经过长期的持续优化与迭代,可媲美大多数的产品,因此使得加高产品更加深入影响到的生活。
从原始石英晶体到精密:晶体振荡器
在电子领域,精确度是最重要的。设备操作的准确性通常取决于其频率产生的稳定性。
大自然就像石英晶振一样,在追求精确的过程中必不可少。现代电子学使用自然界中的石英晶体作为晶体振荡器。这篇博客文章将解释这是如何发生的过程。
了解石英及其独特的属性
石英是地球上发现的最丰富的矿物之一。这是一种由二氧化硅组成的半宝石。石英晶体有多种类型,包括水晶、紫水晶、黄水晶、玫瑰水晶、烟石英、水晶、碧玉、红玉髓和玛瑙。除了其美学吸引力,石英还具有独特的属性,使其成为电子设备的基石。
对石英施加机械应力会产生电荷,人们称这种性质为压电性。许多设备使用的晶体振荡器依赖于石英晶体的特殊性质。
转变过程
将一块原始石英晶体转变成一个功能有源晶体振荡器需要几个步骤。我们一丝不苟地执行每一步,以确保最终的振荡器以最高的精度运行。
切割和研磨
首先将原石英晶体切割并研磨成薄片。通常,它呈矩形或音叉状。由于其晶格,石英的切割影响其频率的稳定性。切割后,晶片进一步研磨和抛光,以达到所需的厚度和平行度。
安装和装箱
石英晶片成型后,我们将其安装在两个电极之间,通常由金属制成。这些电极对于施加使石英振动的电压是必不可少的。石英和电极组件受到温度和湿度的保护,以保持频率稳定性。
测试和调整
封装的石英晶体现在是一个基本的晶体振荡器。然而,工程师在将其用于电子设备之前,必须对其精度进行测试。如果振荡器的频率关闭,我们可能需要稍微调整石英晶片的厚度。这个测试和调整过程一直持续到振荡器以可接受的稳定度工作在所需的频率。
编码 | 晶振厂家 | 描述 | 频率 | 电压 | 频率稳定性 |
SSW048000I3CHE-T | 加高有源晶振 | HSO321S/48MHZ/3.3V/50PPM/-40~85C | 48.000MHZ | 3.3V | ±50ppm |
SSW050000I3CHE-T | 加高有源晶振 | HSO321S/50MHZ/3.3V/50PPM/-40~85C | 50.000MHZ | 3.3V | ±50ppm |
SSW008000I3CHE-T | 加高有源晶振 | HSO321S/8MHZ/3.3V/50PPM/-40~85C/ | 8.000MHZ | 3.3V | ±50ppm |
SSW024576F3CHC-T | 加高有源晶振 | HSO321S/24.576MHZ/3.3V/30PPM/-40 | 24.576MHZ | 3.3V | ±30ppm |
SSW010000I3CHE-T | 加高有源晶振 | HSO321S/10MHZ/3.3V/50PPM/-40~85C | 10.000MHZ | 3.3V | ±50ppm |
SSW025000I3CHE-ST7R2 | 加高有源晶振 | HSO321S/25MHZ/3.3V/50PPM/-40~85C | 25.000MHZ | 3.3V | ±50ppm |
S2H048000F3CHC-T | 加高有源晶振 | HSO221S/48MHZ/3.3V/30PPM/-30~85C | 48.000MHZ | 3.3V | ±30ppm |
TC2S026000DCCHE-T | 加高有源晶振 | TCXO HSB221S/26MHZ/2.8V | 26.000MHZ | 2.8V | ±500ppb |
S2H025000EECHB-ST0R5 | 加高有源晶振 | HSO221S/25MHZ/1.8V/25PPM/-30~85C | 25.000MHZ | - | - |
TC2S026000CZCHA-T | 加高有源晶振 | TCXO HSB221S/26MHZ/1.8V | 26.000MHZ | - | - |
SSW025000I3CHE-T | 加高有源晶振 | 25MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-10℃~+70℃ | 25.000MHZ | 3V~3.6V | ±50ppm |
SSW32768KF3CHC-IT | 加高有源晶振 | 32.768kHz 频率稳定度:±30ppm 工作电压:3V~3.6V 供电电流:3mA 工作温度:-10℃~+70℃ | 32.768kHz | 3V~3.6V | ±30ppm |
SSI025000E3CH | 加高有源晶振 | 25MHz 频率稳定度:±25ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 25.000MHZ | 3V~3.6V | ±25ppm |
SSI030000I3CHE-T | 加高有源晶振 | 30MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-40℃~+85℃ | 30.000MHZ | 3V~3.6V | ±50ppm |
SSR080000F5CH | 加高有源晶振 | 80MHz 频率稳定度:±30ppm 工作电压:4.5V~5.5V 供电电流:60mA 工作温度:-10℃~+70℃ | 80.000MHZ | 4.5V~5.5V | ±30ppm |
SSW022579E3CH | 加高有源晶振 | 22.5792MHz 频率稳定度:±25ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-10℃~+70℃ | 22.5792MHZ | 3V~3.6V | ±25ppm |
SSR027000I3CH | 加高有源晶振 | 27MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 27.000MHZ | 3V~3.6V | ±50ppm |
SSR033000I3CH | 加高有源晶振 | 33MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:16mA 工作温度:-10℃~+70℃ | 33.000MHZ | 3V~3.6V | ±50ppm |
SSR016384I3CH | 加高有源晶振 | 16.384MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-40℃~+85℃ | 16.384MHZ | 3V~3.6V | ±50ppm |
SSW048000F3CH | 加高有源晶振 | 48MHz 频率稳定度:±30ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-40℃~+85℃ | 48.000MHZ | 3V~3.6V | ±30ppm |
SSW024000FECH | 加高有源晶振 | 24MHz 频率稳定度:±20ppm 工作电压:1.71V 供电电流:7mA 工作温度:-40℃~+85℃ | 24.000MHZ | 1.71V | ±20ppm |
SSW033333I3CHE-T | 加高有源晶振 | 33.333MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-40℃~+85℃ | 33.333MHZ | 3V~3.6V | ±50ppm |
SSW024000I3CH | 加高有源晶振 | 24MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:7mA 工作温度:-40℃~+85℃ | 24.000MHZ | 3V~3.6V | ±50ppm |
S2H019200IECHE-T | 加高有源晶振 | 19.2MHz 频率稳定度:-50ppm~+30ppm 工作电压:1.8V 供电电流:7mA 工作温度:-40℃~+85℃ | 19.2MHZ | 1.8V | -50ppm~+30ppm |
S2H32768KF3CHC-IT | 加高有源晶振 | 32.768kHz 频率稳定度:±30ppm 工作电压:3.3V 供电电流:3mA 工作温度:-30℃~+85℃ | 32.768kHz | 3.3V | ±30ppm |
S2H022118F3CHC-T | 加高有源晶振 | 22.1184MHz 频率稳定度:±30ppm 工作电压:3.3V 供电电流:7mA 工作温度:-20℃~+70℃ | 22.1184MHZ | 3.3V | ±30ppm |
S2H008000I3CHE-T | 加高有源晶振 | 8MHz 频率稳定度:±50ppm 工作电压:3.3V 供电电流:7mA 工作温度:-40℃~+85℃ | 8.000MHZ | 3.3V | ±50ppm |
SSR016934I3CHE-T7R6 | 加高有源晶振 | 16.9344MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:16mA 工作温度:-30℃~+85℃ | 16.9344MHZ | 3V~3.6V | ±50ppm |
SSI025000I3CHE-T | 加高有源晶振 | 25MHz 工作电压:1.6V~3.6V 工作温度:-55℃~+125℃ | 25.000MHZ | 1.6V~3.6V | |
SSR024000I5CH | 加高有源晶振 | 24MHz 频率稳定度:±50ppm 工作电压:4.5V~5.5V 供电电流:16mA 工作温度:-10℃~+70℃ | 24.000MHZ | 4.5V~5.5V | ±50ppm |
SSW024000I3CHE-T | 加高有源晶振 | 24MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-30℃~+85℃ | 24.000MHZ | 3V~3.6V | ±50ppm |
S2H024576D3CHA-T | 加高有源晶振 | 24.576MHz 频率稳定度:±20ppm 工作电压:3V~3.6V 供电电流:7mA 工作温度:-20℃~+70℃ | 24.576MHZ | 3V~3.6V | ±20ppm |
SSR025000I3CH | 加高有源晶振 | 25MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 25.000MHZ | 3V~3.6V | ±50ppm |
SSI008000F3CH | 加高有源晶振 | 8MHz 频率稳定度:±30ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 8.000MHZ | 3V~3.6V | ±30ppm |
SSR064000I3CH | 加高有源晶振 | 64MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 64.000MHZ | 3V~3.6V | ±50ppm |
SSW002048F3CHC-T | 加高有源晶振 | 2.048MHz 频率稳定度:±30ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-20℃~+70℃ | 2.048MHZ | 3V~3.6V | ±30ppm |
SSR024000I3CH | 加高有源晶振 | 24MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 24.000MHZ | 3V~3.6V | ±50ppm |
SSR016384I5CH | 加高有源晶振 | 16.384MHz 频率稳定度:±50ppm 工作电压:4.5V~5.5V 供电电流:16mA 工作温度:-10℃~+70℃ | 16.384MHZ | 4.5V~5.5V | ±50ppm |
SSI014318I3CH | 加高有源晶振 | 14.31818MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 14.31818MHZ | 3V~3.6V | ±50ppm |
SSR016600F5CH | 加高有源晶振 | 16.6MHz 频率稳定度:±30ppm 工作电压:4.5V~5.5V 供电电流:16mA 工作温度:-10℃~+70℃ | 16.6MHZ | 4.5V~5.5V | ±30ppm |
SSR033333I3CH | 加高有源晶振 | 33.333MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 33.333MHZ | 3V~3.6V | ±50ppm |
SSW027000FECHC-T | 加高有源晶振 | 27MHz 频率稳定度:±30ppm 工作电压:1.71V 供电电流:10mA 工作温度:-30℃~+85℃ | 27.000MHZ | 1.71V | ±30ppm |
SSR01474AI5CHE-T7 | 加高有源晶振 | 14.7456MHz 频率稳定度:±50ppm 工作电压:4.5V~5.5V 供电电流:25mA 工作温度:-40℃~+85℃ | 14.7456MHZ | 4.5V~5.5V | ±50ppm |
SSR012000F3CHC-T | 加高有源晶振 | 12MHz 频率稳定度:±30ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-40℃~+85℃ | 12.000MHZ | 3V~3.6V | ±30ppm |
SSR050000I3CH | 加高有源晶振 | 50MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 50.000MHZ | 3V~3.6V | ±50ppm |
SSI027000E3CH | 加高有源晶振 | 27MHz 频率稳定度:±25ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-10℃~+70℃ | 27.000MHZ | 3V~3.6V | ±25ppm |
S2H024000FECHC-T | 加高有源晶振 | 24MHz 频率稳定度:±30ppm 工作电压:1.8V 供电电流:7mA 工作温度:-20℃~+70℃ | 24.000MHZ | 1.8V | ±30ppm |
SSW32768KF3CH-I | 加高有源晶振 | 32.768kHz 频率稳定度:±30ppm 工作电压:3V~3.6V 供电电流:3mA 工作温度:-10℃~+70℃ | 32.768kHz | 3V~3.6V | ±30ppm |
SSW32768KE3CH-I | 有源振荡器 | 32.768kHz 频率稳定度:±25ppm 工作电压:3V~3.6V 供电电流:3mA 工作温度:-10℃~+70℃ | 32.768kHz | 3V~3.6V | ±25ppm |
SSW024576I3CH | 加高有源晶振 | 24.576MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-10℃~+70℃ | 24.576MHZ | 3V~3.6V | ±50ppm |
SSR008000I3CHE-T | 加高有源晶振 | 8MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-40℃~+85℃ | 8.000MHZ | 3V~3.6V | ±50ppm |
SSW025000I3CH | 加高有源晶振 | 25MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-10℃~+70℃ | 25.000MHZ | 3V~3.6V | ±50ppm |
SSR100000I3CH | 加高有源晶振 | 100MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:45mA 工作温度:-10℃~+70℃ | 100.000MHZ | 3V~3.6V | ±50ppm |
SSI008000E3CHB-T | 加高有源晶振 | 8MHz 频率稳定度:±25ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-20℃~+70℃ | 8.000MHZ | 3V~3.6V | ±25ppm |
SSW016000D3CH | 加高有源晶振 | 16MHz 频率稳定度:±20ppm 工作电压:3V~3.6V 供电电流:10mA 工作温度:-10℃~+70℃ | 16.000MHZ | 3V~3.6V | ±20ppm |
SSW008000I3CH | 加高有源晶振 | 8MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:7mA 工作温度:-10℃~+70℃ | 8.000MHZ | 3V~3.6V | ±50ppm |
S2H040000F3CHC-T | 加高有源晶振 | 40MHz 频率稳定度:±30ppm 工作电压:3.3V 供电电流:8mA 工作温度:-40℃~+85℃ | 40.000MHZ | 3.3V | ±30ppm |
SSI012000I3CHE-T | 加高有源晶振 | 12MHz 频率稳定度:±50ppm 工作电压:3V~3.6V 供电电流:25mA 工作温度:-40℃~+85℃ | 12.000MHZ | 3V~3.6V | ±50ppm |
1XTV26000AQA | 26.000MHZ | 2.5V | 2.5PPM |
石英晶体振荡器在电子世界中已经变得不可或缺。当电力驱动石英晶体时,它以其特殊的频率振动,产生具有精确频率的信号。该信号稳定数字电路中的时钟信号,稳定收音机中的频率,并保持手表中的时间。
石英振荡器无处不在,所以你可能在任何时候都离它很近,几英尺之内。从手机、电脑到汽车引擎和卫星系统,它们无处不在。领先全球HELE高精密石英晶体振荡器专用于卫星系统.
最后
从原始石英晶体到电子元件,旅程以迷人的方式将自然和技术结合在一起。这证明了人类的聪明才智,我们已经找到了利用石英独特性质的方法。
我们在加高电子公司为不同用途提供高质量的OSC晶振。我们很高兴能成为这一旅程的一部分。
我们产品的精度取决于我们使用的石英晶体的质量。这也取决于我们如何精心制作它们。您可以进一步了解我们对质量的承诺以及石英在我们产品中的作用这里.
当你使用手机或开车时,想想那一小块石英。这块小小的石英有助于这些设备精确工作。从原始石英晶体到现代电子产品不可或缺的一部分,这是一次真正的转变之旅。
From Raw Quartz Crystal to Precision: Crystal Oscillators
In the realm of electronics, precision is paramount. The accuracy of a device's operation often hinges on the stability of its frequency generation.
Nature, like a quartz crystal, is essential in pursuing precision. Modern electronics use a quartz crystal found in nature as a crystal oscillator. This blog post will explain the process of how this happens.
Understanding Quartz and Its Unique Properties
Quartz is one of the most abundant minerals found on Earth. It's a semi-precious gemstone composed of silicon dioxide. Quartz crystals come in various types, including rock crystal, amethyst, citrine, rose quartz, smoky quartz, ametrine, jasper, carnelian, and agate. Beyond its aesthetic appeal, quartz has unique properties, making it a cornerstone of electronic devices.
Applying mechanical stress to quartz generates an electric charge, and people call this property piezoelectricity. Crystal oscillators, which many devices use, rely on the special properties of quartz crystals.
The Transformation Process
Turning a piece of raw crystal quartz into a functional crystal oscillator involves several steps. We perform each step meticulously to ensure that the resultant oscillator functions with the highest possible precision.
Cutting and Grinding
Start by cutting and grinding the raw quartz crystal into a thin wafer. Typically, it takes the shape of a rectangle or a tuning fork. The cutting of quartz affects the stability of its frequency due to its crystal lattice. Once cut, the wafer is further ground and lapped to achieve the desired thickness and parallelism.
Mounting and Encasing
After shaping the quartz wafer, we mount it between two electrodes, usually made of metal. These electrodes are essential for applying the voltage that will cause the quartz to vibrate. The quartz and electrode assembly is protected from temperature and humidity to maintain frequency stability.
Testing and Adjustment
The encased quartz crystal is now a basic crystal oscillator. However, engineers must test it for precision before using it in an electronic device. If the oscillator's frequency is off, we may need to adjust the thickness of the quartz wafer slightly. This testing and adjustment process continues until the oscillator operates at the desired frequency with an acceptable level of stability.
The Role of Quartz Oscillators in Electronics
Quartz crystal oscillators have become indispensable in the world of electronics. When electricity powers the quartz crystal, it vibrates at its special frequency, generating a signal with an exact frequency. This signal stabilizes clock signals in digital circuits, stabilizes frequencies in radios, and keeps time in wristwatches.
Quartz oscillators are everywhere, so you're probably always close to one, within a few feet, at any time. They exist in everything from cell phones and computers to car engines and satellite systems.
In Conclusion
From raw quartz crystal to electronic components, the journey combines nature and technology in a captivating way. It's a testament to human ingenuity that we've found ways to harness the unique properties of quartz for our purposes.
We provide high-quality quartz crystal oscillators for different purposes at Harmony Electronics. We are excited to be a part of this journey.
The accuracy of our products depends on the quality of the quartz crystal we use. It also depends on how carefully we make them. You can learn more about our commitment to quality and the role of quartz in our productshere.
When you use your phone or drive your car, think about the small piece of quartz. This small piece of quartz helps these devices work accurately. From raw quartz crystal to an indispensable part of modern electronics, it's truly a transformation journey.