编码ECS-2033-160-BN是一款具有核心竞争力的超小性SMD振荡器,振荡器可以有几种不同类型的与之相关的谐振器。其中最多产和表现最好的是石英晶振。您还可以找到使用基于陶瓷、SAW[1]或 MEMS[2]的谐振器的振荡器作为工作频率的起点。它们使用机械振动或调谐腔来产生时钟信号。在石英基振荡器的情况下,石英材料的成分以及晶体切割的角度使得这种类型的振荡器在很宽的温度范围内非常精确和稳定。制造振荡器级晶体空白的过程非常耗时,需要许多步骤来确保始终如一的高质量有源晶振产品,但它们提供的稳定性比RC振荡器要好得多。
编码ECS-2033-160-BN是一款具有核心竞争力的超小性SMD振荡器,振荡电路背后的原理是稳定的稳态输出信号。实现此目的的一种方法是使用正反馈循环。在这里,输出电压的一部分被反馈到输入,没有净相移,因此增强了输出信号。然后信号被放大并再次环回,导致输出信号增长。反馈回路中的增益需要控制为单位增益,否则信号将被削波和失真。
Manufacturer Part Number原厂代码 | Manufacturer品牌 | Series型号 | Frequency 频率 | Operating Temperature 工作温度 |
ECS-VXO-73-19.440-TR | ECS晶振 | ECS-VXO-73 | 19.44MHz | -10°C ~ 70°C |
ECS-VXO-73-27.00-TR | ECS晶振 | ECS-VXO-73 | 27MHz | -10°C ~ 70°C |
ECS-VXO-73-27.00-TR | ECS晶振 | ECS-VXO-73 | 27MHz | -10°C ~ 70°C |
ECS-VXO-73-27.00-TR | ECS晶振 | ECS-VXO-73 | 27MHz | -10°C ~ 70°C |
ECS-2033-160-BN | ECS晶振 | ECS-2033 | 16MHz | -40°C ~ 85°C |
ECS-2033-160-BN | ECS晶振 | ECS-2033 | 16MHz | -40°C ~ 85°C |
ECS-2033-160-BN | ECS晶振 | ECS-2033 | 16MHz | -40°C ~ 85°C |
ECS-2033-240-BN | ECS晶振 | ECS-2033 | 24MHz | -40°C ~ 85°C |
ECS-2033-240-BN | ECS晶振 | ECS-2033 | 24MHz | -40°C ~ 85°C |
ECS-2033-240-BN | ECS晶振 | ECS-2033 | 24MHz | -40°C ~ 85°C |
ECS-2033-130-BN | ECS晶振 | ECS-2033 | 13MHz | -40°C ~ 85°C |
ECS-2033-130-BN | ECS晶振 | ECS-2033 | 13MHz | -40°C ~ 85°C |
ECS-2033-130-BN | ECS晶振 | ECS-2033 | 13MHz | -40°C ~ 85°C |
ECS-2033-250-BN | ECS晶振 | ECS-2033 | 25MHz | -40°C ~ 85°C |
ECS-2033-250-BN | ECS晶振 | ECS-2033 | 25MHz | -40°C ~ 85°C |
ECS-2033-250-BN | ECS晶振 | ECS-2033 | 25MHz | -40°C ~ 85°C |
Oscillators can have several different types of resonators associated with them. The most prolific and best performing of these is quartz. You may also find oscillators that use ceramic, SAW[1]or MEMS[2]based resonators to be the starting point for the operational frequency. They use mechanical vibration or tuned cavities to generate the clock signal. In the case of the quartz-based oscillator, the composition of the quartz material, and the angles that the crystal are cut makes this type of oscillator very precise and stable over a wide temperature range. The process for making oscillator grade crystal blanks is time consuming, with many steps to ensure consistent high-quality product, but they offer vastly superior stability over RC oscillators.
The principle behind the oscillator circuit is a stable steady state output signal. One way to accomplish this is by using a positive feedback loop. Here a portion of the output voltage is feedback to the input with no net phase shift, so reinforcing the output signal. The signal is then amplified and looped back again causing the output signal to grow. The gain in the feedback loop needs to be controlled to unity gain, otherwise the signal will be clipped and distorted.