返回首页| 手机网站 | 收藏本站| 网站地图 会员登录| 会员注册

欢迎光临深圳市火运电子有限公司!

火运电子有限公司成熟的技术与服务

全国服务热线0755-29952551

当前位置首页 » 资讯中心 » 行业资讯 » 将可编程拒之门外的32.768K

将可编程拒之门外的32.768K

返回列表 来源:火运电子 查看手机网址
扫一扫!将可编程拒之门外的32.768K扫一扫!
浏览:- 发布日期:2018-05-31 10:48:33【
分享到:

420日,美国进口晶振初创公司SiTime在北京宣布,推出可代替传统石英晶体振荡器的SiT11xx系列MEMS First振荡器(硅机电振荡器)SiT11xx系列提供1MHz125MHz输出频率,适合数玛相机、游戏机、机顶盒、MP3播放器等各类消费电子产品,汽车电子及工业产品应用。SiTime的振荡器在-40℃~85℃温度变化范围内提供50ppm100ppm的频率精度,而操作电压仅在3.3V2.5V1.8VSiTime目前已经可以提供样片,预计9月量产出货。SiTime公司还宣布和香港先思行有限公司(AV Concept Limited)签定中国大陆及香港地区独家销售代理权。

QQ截图20130305103149

1电路结构

如图1 所示是晶振的整体电路.R1为反相器invl提供偏置,使其中的MOS管工作在饱和区以获得较大的增益;C1,C2和杂散电容一起构成晶体的电容负载, 同时它们和反相器invl一起可以等效为一负阻, 为晶体提供其振荡所需要的能量; R2用来降低对晶体的驱动能量, 以防止晶体振坏或出现异常; 反相器inv2invl的输出波形整形并驱动负载.

QQ截图20180123101825

2电路设计及仿真

实际电路按照图1搭建,除了晶体和C1 ,C2的固定部分之外的其它元器件都被集成在电路内部, 器件模型选用的0.25um模型.在设置电路参数时有几点是必须留意的.

Matlab计算出了gm的最大和最小值是分别如图5所示的14.5uS0.7uS,电路中反相器的gm值必须在这两个值间才能保证正常振荡. 因此MOS管选取了较小的宽长比以达到gm的要求.通过CadenceSpectre进行电路仿真得到的gm在各个corner下从6.3us3.2u.s之间,满足要求.

QQ截图20180123101339

偏置电阻R,使反相器invl工作在线性放大区,这样才能使反相用具有大的增益并使其振荡在确定频率.R1的推荐值是1025MΩ之间.随着R1的增大,反相器的增益随之增大,使石英晶体振荡器更快的起振并可以在较低的电源电压下维持振荡。

3电路原理分析

1 所示的晶振电路假如满足巴克豪林准则就可以振荡. 从负阻的角度来分析电路的工作原理.提供负阻的电路如图3(a)所示, 由反相放大器和表晶两真个负载电容构成.

QQ截图20180119160957

M1可以替换图1中的invl,忽略沟道长度调制效应、体效应和晶体管的寄生电容. M1的漏电流即是(-I=/C1s)gm ,因此对于S=jw, 此阻抗由一个即是-gm/(ClCZw2)的负电阻串连C1 C2组成(3(b))

可编程晶振的出现让不少晶振厂家震撼和恐惧,因为这款可编程的晶体出现会直接威胁到石英晶振生产商的饭碗。但是以千赫石英晶振表晶为主要生产的厂家到不是很担心,因为目前的硅机电振荡器替代技术还没法把时钟晶体表晶系列给替代,因此以千赫为主要生产的晶振厂家目前完全不担心。

QQ截图20180117102942

2 所示为晶体的等效电路,Cp是晶体两个引脚间的电容, 对于不同的石英晶振, 其值在2~ 5pf之间; Rs是晶体的等效串连电阻, 其值表示晶体的损失;CsLs分别为晶体的等效串连电容和电感, 这两个值决定了晶体的振荡频率.

在很多数字集成电路中都要用到实时时钟( RTC,  Real Time Clock ) , 而确保RTC工作计时正确的关键部分就是表晶32 .768KHZ有源晶振电路. 本文先容了集成32.768KHZ晶体振荡电路的设计方法及留意事项, 并用Matlab验证了理论分析, Cadence  Spectre 仿真了电路.

QQ截图20180117102855

如图4 所示, 将表晶和放大器的偏置电阻置于M1 的栅漏两端就构成了前面所述的晶振电路,它可以等效为右边的串连谐振电路, 假如要维持电路振荡,必须保证Zc的实部也就是负阻部分的︱Rosc︱≥Rso,这就对反相放大器的gm的大小提出了要求. 分析了gm,的极大值和极小值, gm只有取中间值, 得到的等效负阻的尽对值才大于表晶的串联电阻, 才能够维持晶体的振荡.

设计反相器时, gm的取值应该加以留意. 尤其是对32.768KHZ的晶振, 由于其Rs值很大,gm设置不当很轻易导致晶体不振荡. 在设置了合适的电路参数值的情况下, 使用Matlab画出(3)式中Zc相对于gm的轨迹图,如图5所示,横轴是Zc的实部( 电阻部分),纵轴是Zc的虚部(电容部分). 这里使用晶体Rs最大值为50kΩ.图中竖线对应实轴上的值为50kΩ,也就是说电路可以振荡时gm必须落在竖线左边的半圆上. 竖线与半圆的两个交点分别是gm的最大值和最小值.

QQ截图20180119161352

R2的作用是增加反相器的输出电阻并限制驱动晶振的电流的大小.R2的值必须足够大以防止晶振被过驱动而导致晶体损坏,32.768KHZ晶体的驱动功率最大值是1uW. 对于32.768KHZ的晶振,R2的值在200300kΩ左右.

CL是晶振的负载电容,晶振在使用时对其负载电容是有要求的,以保证晶振在正确的频率下振荡.32.768KHZ的晶振一般要求负载电容为6pf12.5pf,在实际应用中需要对电容进行调节使晶振获得正确的振荡频率. 在本文设计的电路中Cl(C2) 包括两部分的电容,一部分是片外电容。

QQ截图20180118165335

另一部分使用片内集成的可调节的电容阵列,如图6所示,用四个MOS开关控制可变电容从0 15pf变化,依次递增1pf.这样就可以直接通过控制字调节晶体负载电容的大小,以使晶体正确振荡在32.768KHZ.

所有电路参数都设置好之后,使用Spectre进行电路仿真,可以得到晶振电路的起振过程及稳态下的波形.从图7(a)中可以清楚的看到晶振电路的起振过程,一般的起振时间需要几百个ms.稳定情况下invl的一端是正弦波,另一端是被放大了的近似方波,需要图1中所示的inv2进行整型得到外形较好的方波并提供足够的驱动能力驱动后面的数字电路.通过仿真还可以得到流过反相器的电流为1.4uA,晶体的功耗为0.1uW.

QQ截图20180125151953

点击这里给我发消息